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Abstract—Consideration of electromagnetic field problems
solved by the finite-element (FE) method with large FE models
yield high computational effort. Model order reduction (MOR)
techniques can be applied to reduce the computational effort. The
proper generalized decompostition (PGD) is an a-priori method
which calculates the reduced model (RM) from differential
equations separated in previous defined coordinates. To exploit
the a-priori property of PGD the RM is evaluated for each new
mode without the use of a time stepping FE solution. Methods
to efficiently evaluate the RM are presented.

Index Terms—Model order reduction, proper generalized
decomposition, finite-element method, error estimation.

I. INTRODUCTION

Electromagnetic field problems are time and space
dependent. To solve the problem in the space domain the field
can be discretized through the finite-element method (FEM).
For transient problems a time stepping scheme is used. In
case of large problems with a large number of elements in
the FE models, the computation time scales with the number
of time steps. Model order reduction (MOR) techniques have
been successfully applied to reduce the computational effort
of such large problems. The MOR techniques can be divided
into a-posteriori, such as proper orthogonal decomposition [1]
and a-priori methods. The proper generalized decomposition
(PGD) is an a-priori method and does not need the evaluation
of the reference problem [2]. PGD has been successfully
applied to electromagnetic problems [3] [4]. The PGD is
divided into an on-line and off-line process. During the off-line
process the reduced model (RM) is determined, while in the
on-line process the solution is calculated from the RM.

In the off-line process the model is enriched with modes.
The accuracy of the RM strongly depends on the number of
modes. To evaluate a sufficient number of modes a reference
solution (RS) from a time stepping FEM can be used. In this
case the benefit of the a-priori approach, that the RS does
not need to be calculated is lost. Therefore, efficient error
estimation methods to evaluate the RM generated by the PGD
without the use of a RS are studied. Nevertheless, the RM is
often compared to the RS in terms of magnetic energy or joule
and shows good agreement with a small number of modes
[5]. This holds for global values, but does not ensure physical
correct flux lines in all regions of the model.

II. PROPER GENERALIZED DECOMPOSITION WITH
A-FORMULATION

A 3-D magnetic field problem in the space domain Ω with
boundary Γ is considered. The definition of a continuous

magnetic vector potential A(x, t) by curlA(x, t) = B(x, t)
ensures the condition divB = 0. Inserting the magnetic vector
potential A(x, t) and the material relationship H(x, t) =
ν ·B(x, t) into Ampere’s and Faraday-Lenz’s law yields:

∇× (ν · ∇×A(x, t)) + σ
dA(x, t)

dt
= Js(x, t) (1)

Js is the source current in a subspace Ωs and σ the electric
conductivity. Applying the weighted residual approach yields
the weak formulation of (1)∫

t

∫
Ω

ν · curlA(x, t) · curl,a′(x)

+ σ∂tA(x, t) · a′(x) dΩdt

=

∫
t

∫
Ωs

Js(x, t) · a′(x) dΩdt

(2)

with the linear edge based weighting functions a′ and H ×
n = 0 defined on ΓH and B · n = 0 defined on ΓB with n
the normal unit vector on the boundary . To solve (2) a time
stepping technique is commonly applied. In the PGD approach
the solution is approximated in a separated form:

AM (x, t) =

M∑
n=1

Qn(x) ·Wn(t) (3)

Qn(x) is defined in the space Ω and Wn(t) in the
time interval [0, T ], M is the number of modes for the
approximation AM (x, t) with the test function a′(x) written
as

a′(x) = Q′n(x) ·Wn(t) + Qn(x) ·W ′n(t) (4)

with the test functions (Q′n(x),W ′n(t)) defined in the same
space as Qn(x),Wn(t) respectively. Since the approximation
(3) is separated the source term Js(x, t) is separated as well:

Js(x, t) = J′(x) · js(t) (5)

with J′(x) a nominal source field and js(t) the evolution
of the current in time. Supposed the model (3) is
already generated to the mode n − 1, for the next mode
(Qn(x),Wn(t)) an alternating direction strategy is applied:
First Qn(x) is assumed to be known and Q′n(x) vanishes in
(4), resulting in:



∫
Ω

ν · curlQn(x) · curlQn(x) dΩ

∫ T

0

Wn(t) ·W ′n(t) dt

+

∫
Ω

σQn(x) ·Qn(x) dΩ

∫ T

0

∂Wn(t) ·W ′n(t) dt

=

∫
Ω

J′(x) ·Qn(x) dΩ

∫ T

0

js(t) ·W ′n(t)dt

−
n−1∑
i=1

∫
Ω

ν · curlQi(x) · curlQn(x) dΩ

∫ T

0

Wi(t) ·W ′n(t) dt

−
n−1∑
i=1

∫
Ω

σQi(x) ·Qn(x) dΩ

∫ T

0

∂Wi(t) ·W ′n(t) dt

(6)

Second Wn(t) is assumed to be known and W ′n(t) vanishes
in (4) resulting in:

∫ T

0

Wn(t) ·Wn(t) dt

∫
Ω

ν · curlQn(x) · curlQ′n(x) dΩ

+

∫ T

0

∂Wn(t) ·Wn(t) dt

∫
Ω

σQn(x) ·Q′n(x) dΩ

=

∫ T

0

js(t) ·Wn(t)dt

∫
Ω

J′(x) ·Q′n(x) dΩ

−
n−1∑
i=1

∫ T

0

Wi(t) ·Wn(t) dt

∫
Ω

ν · curlQi(x) · curlQ′n(x) dΩ

−
n−1∑
i=1

∫ T

0

∂Wi(t) ·Wn(t) dt

∫
Ω

σQi(x) ·Q′n(x) dΩ

(7)

Equation (6) is solved with an euler time-stepping scheme
and (7) with the FEM. The iteration stops if the change of
(Qn(x), ·Wn(t)) of two consecutive iteration steps falls under
a defined bound.
In the enrichment process the modes are calculated. The
stopping criterion of the enrichment process determines the
number of modes which are calculated. Possible criterions
are the evaluation the newest mode weight compared to the
approximation weight or first mode weight:

ε(n) =
||Qn(x) ·Wn(t)||

||
n∑

i=1

Qi(x) ·Wi(t)||
or ε(n) =

||Qn(x) ·Wn(t)||
||Q1(x) ·W1(t)||

(8)
To get a stopping criterion with a more physical meaning

the change of the mean magnetic energy in the model is
calculated for each new mode. In the nth enrichment step
the approximation An−1

d is already calculated an the magnetic
energy in the model can be calculated parallel to the new
mode. To compare the results with a time stepping FEM
(wmag,ref ) the error is estimated with:

ε(wmag) =
||wmag,ref − wmag,pgd||2

||wmag,ref ||2
(9)
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(a) Geometry.
(b) evolution of relative magnetic
energy.

Fig. 1: Problems geometry (left) and evolution of relatve
magnetic energy change with increasing number of modes.

III. APPLICATION

The PGD method is applied to magnetoquasi-static problem.
In Fig. 1 the geometry is pictured and consists of a coil
winding around an electric conducting material. The winding
and conducting material are together discretized with 13951
tetrahedron. The coil is supplied with a sinusoidal current of
Is = 100 A resulting in a current density of Js = 3.4 A/m2

and a frequency of f = 1 kHz. Two periods are simulated
with an equidistant discretisation in time of 60 time steps.
For every approximation An

d the mean magnetic energy is
calculated for each time step. Fig. 1b shows the change of
the mean magnetic energy with increasing number of modes.
From 4 to 6 modes nearly no changes can be observed.
A comparison with the reference model shows an error of
ε(wmag,n=6) = 18 %. It is obvious that a pure evaluation of
the change in the magnetic energy is not sufficient to estimate
the models accuracy without a reference model.

IV. CONCLUSION

This paper utilizes the proper generalized decomposition
method to generate a reduced order model of 3D
magnetoquasi-static field problems. The PGD is successfully
applied to a simple geometry and analysed in terms of
accuracy of the reduced model. Since the energy is a global
value no local phenomena are considered so far to evaluate
the model in the enrichment process. The full paper will
include methods to evaluate the accuracy of the model without
a reference solutions. Therefore different methods for error
estimation are applied, such as the evolution of the model
energy in the first stage of the enrichment process and local
gradient methods for higher number of modes.
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